论文标题

通过域适应的公平分类:双重对手学习方法

Fair Classification via Domain Adaptation: A Dual Adversarial Learning Approach

论文作者

Liang, Yueqing, Chen, Canyu, Tian, Tian, Shu, Kai

论文摘要

现代机器学习(ML)模型越来越流行,并广泛用于决策系统。但是,研究表明,ML歧视和不公平性的关键问题阻碍了他们对高级应用程序的采用。对公平分类器的最新研究引起了人们对开发有效算法的关注,以实现公平性和良好的分类性能。尽管这些公平感知到的机器学习模型取得了巨大的成功,但大多数现有模型都需要敏感属性来预处理数据,将模型学习的正规化或后处理规范,以实现公平的预测。但是,由于隐私,法律或法规限制,敏感属性通常是不完整甚至不可用的。尽管我们缺乏训练目标域中公平模型的敏感属性,但可能存在具有敏感属性的类似域。因此,重要的是从类似域中利用辅助信息,以帮助改善目标域中的公平分类。因此,在本文中,我们研究了探索域适应性进行公平分类的新问题。我们提出了一个新框架,可以学会从源域中调整敏感属性,以在目标域中进行公平分类。在现实世界数据集上进行的广泛实验说明了提出的公平分类模型的有效性,即使目标域中没有敏感属性。

Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn significant attention to developing effective algorithms to achieve fairness and good classification performance. Despite the great success of these fairness-aware machine learning models, most of the existing models require sensitive attributes to pre-process the data, regularize the model learning or post-process the prediction to have fair predictions. However, sensitive attributes are often incomplete or even unavailable due to privacy, legal or regulation restrictions. Though we lack the sensitive attribute for training a fair model in the target domain, there might exist a similar domain that has sensitive attributes. Thus, it is important to exploit auxiliary information from a similar domain to help improve fair classification in the target domain. Therefore, in this paper, we study a novel problem of exploring domain adaptation for fair classification. We propose a new framework that can learn to adapt the sensitive attributes from a source domain for fair classification in the target domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model for fair classification, even when no sensitive attributes are available in the target domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源