论文标题
具有自然风格和混合量子算法的机器人轨迹计划的优化
Optimization of Robot Trajectory Planning with Nature-Inspired and Hybrid Quantum Algorithms
论文作者
论文摘要
我们解决了与行业相关的尺度上的机器人轨迹计划问题。我们的端到端解决方案将高度通用的随机键算法与模型堆叠和集成技术集成在一起,并将路径重新链接到解决方案改进中。核心优化模块由一个偏见的随机基因算法组成。通过与问题依赖性和问题相关模块的独特分离,我们通过约束的天然编码实现了有效的问题表示。我们表明,对替代算法范式(例如模拟退火)的概括是直接的。我们为行业规模的数据集提供数值基准结果。发现我们的方法始终超过贪婪的基线结果。为了评估当今量子硬件的功能,我们使用Amazon Braket上的Qbsolv在量子退火硬件上获得的经典方法来补充经典方法。最后,我们展示了如何将后者集成到我们的较大管道中,从而为问题提供了量子就绪的混合解决方案。
We solve robot trajectory planning problems at industry-relevant scales. Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques, as well as path relinking for solution refinement. The core optimization module consists of a biased random-key genetic algorithm. Through a distinct separation of problem-independent and problem-dependent modules, we achieve an efficient problem representation, with a native encoding of constraints. We show that generalizations to alternative algorithmic paradigms such as simulated annealing are straightforward. We provide numerical benchmark results for industry-scale data sets. Our approach is found to consistently outperform greedy baseline results. To assess the capabilities of today's quantum hardware, we complement the classical approach with results obtained on quantum annealing hardware, using qbsolv on Amazon Braket. Finally, we show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.