论文标题
全息散布的边缘传感器(HDFS):相平进巨型麦哲伦望远镜
The Holographic Dispersed Fringe Sensors (HDFS): phasing the Giant Magellan Telescope
论文作者
论文摘要
下一代的巨型分割镜望远镜(GSMT)将在次级镜像(E-ELT和TMT)(E-ELT和TMT)的阴影引起的片段之间存在很大的差距,或者通过设计(GMT)本质上。这些间隙足够大,可以将光圈碎裂成独立的段,而独立的片段比典型的油炸参数隔开了。这会产生活塞和花瓣模式,这些模式无法通过传统的波前传感器(例如Shack-Hartmann波前传感器或金字塔波前传感器)良好感知。我们建议使用一种新的光学设备,即全息散布的边缘传感器(HDFS)来感知和控制这些花瓣/活塞模式。 HDFS使用单个学生平面全息图,将片段干扰到焦平面的不同空间位置。数值模拟表明,对于GMT/e-ELT/TMT,HDFS非常有效,并且达到小于10 nm的差异活塞RMS,用于指导恒星,最高为13th J+H频段级。 HDFS还在实验室中使用Magao-X和HCAT(GMT phasing Testbend)进行了验证。在麦哲伦望远镜孔径上,实验室实验达到5 nm RMS活塞误差。 HDF在分段的GMT样光圈上还达到了50 nm RMS的活塞误差,而金字塔波前传感器则在中位数看到的情况下补偿了模拟大气。模拟和实验室结果证明了HDF是GMT的出色活塞传感器。我们发现,金字塔斜率传感器与HDFS活塞传感器的组合是GMT的强大架构。
The next generation of Giant Segmented Mirror Telescopes (GSMT) will have large gaps between the segments either caused by the shadow of the mechanical structure of the secondary mirror (E-ELT and TMT) or intrinsically by design (GMT). These gaps are large enough to fragment the aperture into independent segments that are separated by more than the typical Fried parameter. This creates piston and petals modes that are not well sensed by conventional wavefront sensors such as the Shack-Hartmann wavefront sensor or the pyramid wavefront sensor. We propose to use a new optical device, the Holographic Dispersed Fringe Sensor (HDFS), to sense and control these petal/piston modes. The HDFS uses a single pupil-plane hologram to interfere the segments onto different spatial locations in the focal plane. Numerical simulations show that the HDFS is very efficient and that it reaches a differential piston rms smaller than 10 nm for GMT/E-ELT/TMT for guide stars up to 13th J+H band magnitude. The HDFS has also been validated in the lab with MagAO-X and HCAT, the GMT phasing testbed. The lab experiments reached 5 nm rms piston error on the Magellan telescope aperture. The HDFS also reached 50 nm rms of piston error on a segmented GMT-like aperture while the pyramid wavefront sensor was compensating simulated atmosphere under median seeing conditions. The simulations and lab results demonstrate the HDFS as an excellent piston sensor for the GMT. We find that the combination of a pyramid slope sensor with a HDFS piston sensor is a powerful architecture for the GMT.