论文标题

同时合理的第二学位合理图

Simultaneous Rational Periodic Points of Degree-2 Rational Maps

论文作者

Barsakçı, Burcu, Sadek, Mohammad

论文摘要

令$ s $是二次多项式地图的集合,并且学位$ 2 $ - 理性的地图,其自动形态组是同构为$ C_2 $在有理领域定义的。假设Poonen和Manes的标准猜想是在$ S $中的地图下的周期点的周期性长度上的标准猜想,我们对Triples $(F_1,F_2,P)$的完整描述,使得$ P $是S $,$ i = 1,2 $的$ f_i \的合理定期。我们还表明,在理性场上,不超过三个二次多项式图可以具有共同的周期点。此外,在这些假设下,我们表明两个非零有理数$ a,b $是地图的周期点$ ϕ_ {t_1,t_1,t_2}(z)= t_1 z + t_2/z $,用于无限的许多非零合理对$(t_1,t_1,t_2)$,并且仅在$ a^2 = b^b^b^b^b^b^b^b^b^b^b^b^2 $(t_1,t_2)$中。

Let $S$ be the collection of quadratic polynomial maps, and degree $2$-rational maps whose automorphism groups are isomorphic to $C_2$ defined over the rational field. Assuming standard conjectures of Poonen and Manes on the period length of a periodic point under the action of a map in $S$, we give a complete description of triples $(f_1,f_2,p)$ such that $p$ is a rational periodic point for both $f_i\in S$, $i=1,2$. We also show that no more than three quadratic polynomial maps can possess a common periodic point over the rational field. In addition, under these hypotheses we show that two nonzero rational numbers $a, b $ are periodic points of the map $ϕ_{t_1,t_2}(z)=t_1 z + t_2/z$ for infinitely many nonzero rational pairs $(t_1, t_2)$ if and only if $a^2 = b^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源