论文标题
有效的半监督质量控制系统,该系统使用基于物理的MRI ARTEFACT发电机和对抗训练进行了培训
An efficient semi-supervised quality control system trained using physics-based MRI-artefact generators and adversarial training
论文作者
论文摘要
大型医学成像数据集变得越来越多,但是确保没有大量伪像的样本质量具有挑战性。识别医学成像中缺陷的现有方法依赖于数据密集型方法,这些方法是临床研究中培训机器学习模型的稀有扫描量的稀缺性。为了解决这个问题,我们提出了一个具有四个主要组成部分的框架:1)受磁共振物理启发的人工制造发电机,以损坏大脑MRI扫描并增强培训数据集,2)抽象和工程功能,以紧凑地表示图像,3)一个功能选择过程,取决于分类的手工艺类别,以改善分类器,以及4)svm classififers以确定Artefs。我们的贡献是三重的:首先,基于物理的人工制品发生器可以通过受控的人工制品生产合成的大脑MRI扫描,以进行数据增强。这将避免使用稀有人工制品的扫描扫描的劳动密集型收集和标记过程。其次,我们提出了一系列抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的特征选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在多发性硬化症临床试验中,专家确定了真实的人工制品,表明拟议的管道表现优于传统方法。特别是,我们的数据增强可在准确性,精度和召回率上提高性能高达12.5个百分点。我们管道的计算效率可以实时部署潜在的实时部署,并通过由质量控制系统驱动的自动图像处理管道来承诺高通量临床应用。
Large medical imaging data sets are becoming increasingly available, but ensuring sample quality without significant artefacts is challenging. Existing methods for identifying imperfections in medical imaging rely on data-intensive approaches, compounded by a scarcity of artefact-rich scans for training machine learning models in clinical research. To tackle this problem, we propose a framework with four main components: 1) artefact generators inspired by magnetic resonance physics to corrupt brain MRI scans and augment a training dataset, 2) abstract and engineered features to represent images compactly, 3) a feature selection process depending on the artefact class to improve classification, and 4) SVM classifiers to identify artefacts. Our contributions are threefold: first, physics-based artefact generators produce synthetic brain MRI scans with controlled artefacts for data augmentation. This will avoid the labour-intensive collection and labelling process of scans with rare artefacts. Second, we propose a pool of abstract and engineered image features to identify 9 different artefacts for structural MRI. Finally, we use an artefact-based feature selection block that, for each class of artefacts, finds the set of features providing the best classification performance. We performed validation experiments on a large data set of scans with artificially-generated artefacts, and in a multiple sclerosis clinical trial where real artefacts were identified by experts, showing that the proposed pipeline outperforms traditional methods. In particular, our data augmentation increases performance by up to 12.5 percentage points on accuracy, precision, and recall. The computational efficiency of our pipeline enables potential real-time deployment, promising high-throughput clinical applications through automated image-processing pipelines driven by quality control systems.