论文标题
驱动周期系统中的异常运输:参数空间中绝对负迁移率效应的分布
Anomalous transport in driven periodic systems: distribution of the absolute negative mobility effect in the parameter space
论文作者
论文摘要
绝对负迁移率是异常运输行为最矛盾的形式之一。乍一看,它与叠加原则和热力学的第二定律相矛盾,但是,其引人入胜的性质桥接了非线性和非Qulibrium,这些基本规则不再有效。我们考虑在驱动的周期系统中,非线性布朗运动的范式模型,该系统表现出绝对负迁移率。到目前为止,有关此异常运输特征的研究主要限于单个案例研究,因为该模型具有复杂的多维参数空间。相反,在这里,我们收集GPU超级计算机来分析参数空间中负迁移率的分布。我们考虑将近$ 10^9 $参数制度,以讨论负移动性的出现如何取决于系统参数,并提供最频繁的最佳迁移率。
Absolute negative mobility is one of the most paradoxical forms of anomalous transport behaviour. At the first glance it contradicts the superposition principle and the second law of thermodynamics, however, its fascinating nature bridges nonlinearity and nonequlibrium in which these fundamental rules are no longer valid. We consider a paradigmatic model of the nonlinear Brownian motion in a driven periodic system which exhibits the absolute negative mobility. So far research on this anomalous transport feature has been limited mostly to the single case studies due to the fact that this model possesses the complex multidimensional parameter space. In contrast, here we harvest GPU supercomputers to analyze the distribution of negative mobility in the parameter space. We consider nearly $10^9$ parameter regimes to discuss how the emergence of negative mobility depends on the system parameters as well as provide the optimal ones for which it occurs most frequently.