论文标题
针对精确模型预测轨迹跟踪的四型动力学的物理启发的时间学习
Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate Model Predictive Trajectory Tracking
论文作者
论文摘要
准确地建模四极管的系统动力学对于保证敏捷,安全和稳定的导航至关重要。该模型需要在多个飞行机制和操作条件下捕获系统行为,包括产生高度非线性效应的那些,例如空气动力和扭矩,转子相互作用或可能的系统配置修改。经典方法依靠手工制作的模型并努力概括和扩展以捕获这些效果。在本文中,我们提出了一种新型的物理启发的时间卷积网络(PI-TCN)方法,用于学习四极管的系统动力学,纯粹是从机器人体验中。我们的方法结合了稀疏的时间卷积的表达力和密集的进料连接,以进行准确的系统预测。此外,物理限制已嵌入到训练过程中,以促进网络对培训分布之外数据的概括能力。最后,我们设计了一种模型预测控制方法,该方法结合了学习的动力学,以完全利用学习范围的方式进行准确的闭环轨迹跟踪。实验结果表明,我们的方法可以准确地从数据中提取四四光动力学的结构,从而捕获对经典方法隐藏的效果。据我们所知,这是物理启发的深度学习首次成功地应用于时间卷积网络和系统识别任务,同时同时实现了预测性控制。
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation. The model needs to capture the system behavior in multiple flight regimes and operating conditions, including those producing highly nonlinear effects such as aerodynamic forces and torques, rotor interactions, or possible system configuration modifications. Classical approaches rely on handcrafted models and struggle to generalize and scale to capture these effects. In this paper, we present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience. Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions. In addition, physics constraints are embedded in the training process to facilitate the network's generalization capabilities to data outside the training distribution. Finally, we design a model predictive control approach that incorporates the learned dynamics for accurate closed-loop trajectory tracking fully exploiting the learned model predictions in a receding horizon fashion. Experimental results demonstrate that our approach accurately extracts the structure of the quadrotor's dynamics from data, capturing effects that would remain hidden to classical approaches. To the best of our knowledge, this is the first time physics-inspired deep learning is successfully applied to temporal convolutional networks and to the system identification task, while concurrently enabling predictive control.