论文标题

基于学习的运动计划与混合密度网络

Learning-Based Motion Planning with Mixture Density Networks

论文作者

Wang, Yinghan, Duan, Xiaoming, He, Jianping

论文摘要

计算时间和路径最优之间的权衡是运动计划算法中的关键考虑。尽管基于经典抽样的算法在高维计划中没有计算效率,但基于学习的方法在实现时间效率和最佳运动计划方面表现出巨大的潜力。基于SOTA学习的运动计划算法利用基于抽样方法生成的路径作为专家监督数据,并通过回归技术来培训网络。但是,这些方法通常会忽略训练集中最佳路径的重要多模式特性,从而使它们在某些情况下无法找到良好的路径。在本文中,我们根据混合密度网络提出了一个多模式神经元计划器(MNP),该混合物密度网络明确考虑了训练数据的多模式,并同时实现了时间效率和路径最佳性。对于由点云代表的环境,MNP首先通过编码适合处理点云的网络来有效地将点云压缩到潜在的向量中。然后,我们设计多模式计划网络,使MNP能够学习和预测多个最佳解决方案。仿真结果表明,我们的方法优于基于SOTA学习的方法MPNET和基于高级采样的方法IRRT*和BIT*。

The trade-off between computation time and path optimality is a key consideration in motion planning algorithms. While classical sampling based algorithms fall short of computational efficiency in high dimensional planning, learning based methods have shown great potential in achieving time efficient and optimal motion planning. The SOTA learning based motion planning algorithms utilize paths generated by sampling based methods as expert supervision data and train networks via regression techniques. However, these methods often overlook the important multimodal property of the optimal paths in the training set, making them incapable of finding good paths in some scenarios. In this paper, we propose a Multimodal Neuron Planner (MNP) based on the mixture density networks that explicitly takes into account the multimodality of the training data and simultaneously achieves time efficiency and path optimality. For environments represented by a point cloud, MNP first efficiently compresses the point cloud into a latent vector by encoding networks that are suitable for processing point clouds. We then design multimodal planning networks which enables MNP to learn and predict multiple optimal solutions. Simulation results show that our method outperforms SOTA learning based method MPNet and advanced sampling based methods IRRT* and BIT*.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源