论文标题

非优质分类和投影本地O-Wimimal类

Non-elementary categoricity and projective locally o-minimal classes

论文作者

Zilber, Boris

论文摘要

给定一个封面的$ \ mathbb {u} $是一个光滑的复杂代数品种的家族,我们将其与$ \ mathcal {u}相关联,$ contecal of o-Minals在o-Minimal the Reals中均可在本地定义的结构。我们证明该类是$ \ aleph_0 $ - homepoin,而不是子模型和稳定。因此,$ \ Mathcal {u} $在基数$ \ aleph_1中是绝对的。

Given a cover $\mathbb{U}$ of a family of smooth complex algebraic varieties, we associate with it a class $\mathcal{U},$ containing $\mathbb{U}$, of structures locally definable in an o-minimal expansion of the reals. We prove that the class is $\aleph_0$-homogenous over submodels and stable. It follows that $\mathcal{U}$ is categorical in cardinality $\aleph_1.$ In the one-dimensional case we prove that a slight modification of $\mathcal{U}$ is an abstract elementary class categorical in all uncountable cardinals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源