论文标题

结合遗传编程和粒子群优化以简化崎landscapes的探索

Combining Genetic Programming and Particle Swarm Optimization to Simplify Rugged Landscapes Exploration

论文作者

Pietropolli, Gloria, Menara, Giuliamaria, Castelli, Mauro

论文摘要

传统的统计技术或元启发式学很难解决大多数现实世界的优化问题。主要困难与存在相当数量的局部Optima有关,这可能导致优化过程的过早收敛性。为了解决这个问题,我们提出了一种新型的启发式方法,用于构建原始功能的平滑替代模型。替代功能更容易优化,但保持原始坚固的健身景观的基本属性:全球最佳的位置。为了创建这样的替代模型,我们考虑通过自我调整的健身函数增强的线性遗传编程方法。所提出的称为GP-FST-PSO替代模型的算法在搜索全局最优值和产生原始基准函数的视觉近似(在二维情况下)的搜索中取得了令人满意的结果。

Most real-world optimization problems are difficult to solve with traditional statistical techniques or with metaheuristics. The main difficulty is related to the existence of a considerable number of local optima, which may result in the premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach enhanced by a self-tuning fitness function. The proposed algorithm, called the GP-FST-PSO Surrogate Model, achieves satisfactory results in both the search for the global optimum and the production of a visual approximation of the original benchmark function (in the 2-dimensional case).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源