论文标题

使用隐式保真度信息进行元学习算法选择

Towards Meta-learned Algorithm Selection using Implicit Fidelity Information

论文作者

Mohan, Aditya, Ruhkopf, Tim, Lindauer, Marius

论文摘要

自动为给定数据集选择最佳性能算法或通过其预期性能对多个算法进行排名,从而支持用户开发新的机器学习应用程序。此问题的大多数方法都依赖于预先计算的数据集元游戏和地标性表演来捕获数据集的显着拓扑以及算法所参与的拓扑。地标通常利用廉价算法不一定在候选算法中以获得拓扑近似的近似值。尽管有些指示,手工制作的数据集元功能和地标可能是描述符的不足,但强烈取决于地标和候选算法搜索的拓扑结合。我们提出了IMFA,这是一种直接从候选算法中直接从候选算法中利用多保真地标的信息的方法,该形式是通过LSTMS通过LSTMS在测试过程中通过LSTMS通过LSTMS进行的。使用这种机制,IMFA共同了解数据集的拓扑结构和候选算法的电感偏见,而无需付出额外的训练以收敛。我们的方法产生信息的地标,以低计算成本的任意元功能容易丰富,能够使用廉价的保真度来产生所需的排名。我们还表明,IMFA能够在测试时间内最多可以将连续的减半击败。

Automatically selecting the best performing algorithm for a given dataset or ranking multiple algorithms by their expected performance supports users in developing new machine learning applications. Most approaches for this problem rely on pre-computed dataset meta-features and landmarking performances to capture the salient topology of the datasets and those topologies that the algorithms attend to. Landmarking usually exploits cheap algorithms not necessarily in the pool of candidate algorithms to get inexpensive approximations of the topology. While somewhat indicative, hand-crafted dataset meta-features and landmarks are likely insufficient descriptors, strongly depending on the alignment of the topologies that the landmarks and the candidate algorithms search for. We propose IMFAS, a method to exploit multi-fidelity landmarking information directly from the candidate algorithms in the form of non-parametrically non-myopic meta-learned learning curves via LSTMs in a few-shot setting during testing. Using this mechanism, IMFAS jointly learns the topology of the datasets and the inductive biases of the candidate algorithms, without the need to expensively train them to convergence. Our approach produces informative landmarks, easily enriched by arbitrary meta-features at a low computational cost, capable of producing the desired ranking using cheaper fidelities. We additionally show that IMFAS is able to beat Successive Halving with at most 50% of the fidelity sequence during test time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源