论文标题

用大规模结构来约束空间曲率

Constraining spatial curvature with large-scale structure

论文作者

Bel, Julien, Larena, Julien, Maartens, Roy, Marinoni, Christian, Perenon, Louis

论文摘要

我们在一致性模型的扩展中分析了大尺度上物质的聚类,该模型允许空间曲率。我们开发了一种一致的方法来对红移空间中的星系2点相关函数进行曲率和广角效应。特别是我们得出了$fσ_{8} $的alcock-paczynski失真,这与文献中的经验模型有很大不同。一个关键的创新是使用“聚类比率”,它以不同的方式探测聚类,以使其与红移空间畸变不同,因此它们的组合提供了更强大的宇宙学约束。我们使用这种组合来限制宇宙学参数,而无需CMB信息。在弯曲的宇宙中,我们发现$ω_ {{\ rm m},0} = 0.26 \ pm 0.04 $(68 \%cl)。当聚类探针与低红移背景探针(BAO和SNIA)结合使用时,我们获得了曲率无关的约束:$ω_{k,0} = 0.0041 \,_ { - 0.0504}^{+0.0500} $。我们发现没有贝叶斯证据表明可以拒绝平坦的一致性模型。此外,我们证明了脱钩时的声音范围为$ r _ {\ rm d} = 144.57 \ pm 2.34 \; {\ rm mpc} $,与CMB各向异性的测量。结果,后期的宇宙与flat $λ$ cdm和标准声层兼容,导致$ h_ {0} $,{\ em {\ em note}的小价值假设有任何CMB信息。聚类比率测量结果产生的唯一低频聚类数据集与CMB不同意,并结合了两个数据集,我们获得了$ω__{K,0} = -0.023 \ pm 0.010 $。

We analyse the clustering of matter on large scales in an extension of the concordance model that allows for spatial curvature. We develop a consistent approach to curvature and wide-angle effects on the galaxy 2-point correlation function in redshift space. In particular we derive the Alcock-Paczynski distortion of $fσ_{8}$, which differs significantly from empirical models in the literature. A key innovation is the use of the `Clustering Ratio', which probes clustering in a different way to redshift-space distortions, so that their combination delivers more powerful cosmological constraints. We use this combination to constrain cosmological parameters, without CMB information. In a curved Universe, we find that $Ω_{{\rm m}, 0}=0.26\pm 0.04$ (68\% CL). When the clustering probes are combined with low-redshift background probes -- BAO and SNIa -- we obtain a CMB-independent constraint on curvature: $Ω_{K,0} = 0.0041\,_{-0.0504}^{+0.0500}$. We find no Bayesian evidence that the flat concordance model can be rejected. In addition we show that the sound horizon at decoupling is $r_{\rm d} = 144.57 \pm 2.34 \; {\rm Mpc}$, in agreement with its measurement from CMB anisotropies. As a consequence, the late-time Universe is compatible with flat $Λ$CDM and a standard sound horizon, leading to a small value of $H_{0}$, {\em without} assuming any CMB information. Clustering Ratio measurements produce the only low-redshift clustering data set that is not in disagreement with the CMB, and combining the two data sets we obtain $Ω_{K,0}= -0.023 \pm 0.010$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源