论文标题
层面深度细化和掩模指南
Layered Depth Refinement with Mask Guidance
论文作者
论文摘要
深度图在从3D渲染到2D图像效应(例如散景)的广泛应用中使用。但是,那些由单个图像深度估计(侧)模型预测的人通常无法捕获对象中的孤立孔和/或具有不准确的边界区域。同时,使用商业自动掩蔽工具或现成的分割和垫子的方法,甚至是通过手动编辑,使用商业自动掩盖工具或现成的方法更容易获得。因此,在本文中,我们提出了一个新的面具引导深度细化的问题,该问题利用通用面具来完善侧面模型的深度预测。我们的框架执行分层的细化和介入/支出,将深度映射分解为两个由掩码和倒置面具表示的单独的层。由于具有深度和掩码注释的数据集很少,因此我们提出了一种使用任意掩码和RGB-D数据集的自我监督学习方案。我们从经验上表明,我们的方法对不同类型的掩码和初始深度预测具有鲁棒性,可以准确地完善内部和外面掩码边界区域的深度值。我们通过消融研究进一步分析了我们的模型,并在实际应用上展示了结果。可以在https://sooyekim.github.io/maskdepth/上找到更多信息。
Depth maps are used in a wide range of applications from 3D rendering to 2D image effects such as Bokeh. However, those predicted by single image depth estimation (SIDE) models often fail to capture isolated holes in objects and/or have inaccurate boundary regions. Meanwhile, high-quality masks are much easier to obtain, using commercial auto-masking tools or off-the-shelf methods of segmentation and matting or even by manual editing. Hence, in this paper, we formulate a novel problem of mask-guided depth refinement that utilizes a generic mask to refine the depth prediction of SIDE models. Our framework performs layered refinement and inpainting/outpainting, decomposing the depth map into two separate layers signified by the mask and the inverse mask. As datasets with both depth and mask annotations are scarce, we propose a self-supervised learning scheme that uses arbitrary masks and RGB-D datasets. We empirically show that our method is robust to different types of masks and initial depth predictions, accurately refining depth values in inner and outer mask boundary regions. We further analyze our model with an ablation study and demonstrate results on real applications. More information can be found at https://sooyekim.github.io/MaskDepth/ .