论文标题
部分可观测时空混沌系统的无模型预测
Singular support and Characteristic cycle of a rank one sheaf in codimension two
论文作者
论文摘要
我们使用RAMIFIENT理论计算在编码2中平滑品种的奇异支持和秩1层的特征周期,当捆捆的分支清洁时。我们开发了一种一般理论,称为部分对数分支理论,并在对数的cotangent束上定义了一个代数循环,并沿边界沿着部分对数极点。我们证明,循环支撑的反面图像和循环的背带对cotangent束的套件分别等于奇异支撑和特征周期,在温和假设下,封装的封闭子集的封闭子集大于2。
We compute the singular support and the characteristic cycle of a rank 1 sheaf on a smooth variety in codimension 2 using ramification theory, when the ramification of the sheaf is clean. We develop a general theory, called the partially logarithmic ramification theory, and define an algebraic cycle on a logarithmic cotangent bundle with partial logarithmic poles along the boundary. We prove that the inverse image of the support of the cycle and the pull-back of the cycle to the cotangent bundle are equal to the singular support and the characteristic cycle, respectively, outside a closed subset of the variety of codimension greater than 2 under a mild assumption.