论文标题

丰富的广告拍卖中的福利最大化的简单机制

Simple Mechanisms for Welfare Maximization in Rich Advertising Auctions

论文作者

Aggarwal, Gagan, Bhawalkar, Kshipra, Mehta, Aranyak, Mohan, Divyarthi, Psomas, Alexandros

论文摘要

互联网广告拍卖已经从几行文本演变为更丰富的信息布局,其中包括图像,Sitelinks,视频等。这些新格式的广告占据了不同的空间,广告客户只能提供多种格式,只能显示其中一种。卖方现在面临多参数机理设计问题。计算有效的分配在计算上是棘手的,因此标准的Vickrey-Clarke-Groves(VCG)拍卖虽然真实而福利最佳,但是不切实际的。 在本文中,我们解决了现代广告拍卖设计中的一个基本问题。我们采用了``迈尔森尼人''的方法,并研究了在竞标和丰富广告集中单调的分配规则。我们表明,此类规则可以与付款功能配对,以进行真实的拍卖。我们的主要技术挑战是设计一个单调规则,该规则可与最佳福利产生良好的近似值。单调性不适合标准算法,例如每次爆炸的次数增量,可以使诸如我们的````knapsack like''''问题近似。实际上,我们表明,没有确定性的单调规则可以在一个比$ 2 $的因素内近似最佳福利(而不是非单调的FPTA)。我们的主要结果是一项新的,简单,贪婪和单调分配规则,可确保$ 3 $近似。 在实践中的广告拍卖中,单调分配规则通常与所谓的广义第二名(GSP)支付规则配对,该规则向分配变化以下的最低阈值价格收取最低阈值。我们证明,即使我们的单调分配规则与GSP配对并非真实,但其无政府状态(POA)的价格也有限。根据标准没有超额假设,我们证明了$ 6 $的纯POA和$ \ frac {6} {(1 - \ frac {1} {1} {e} {e})} $ bunes -nash poa。最后,我们通过实验测试现实数据的算法。

Internet ad auctions have evolved from a few lines of text to richer informational layouts that include images, sitelinks, videos, etc. Ads in these new formats occupy varying amounts of space, and an advertiser can provide multiple formats, only one of which can be shown. The seller is now faced with a multi-parameter mechanism design problem. Computing an efficient allocation is computationally intractable, and therefore the standard Vickrey-Clarke-Groves (VCG) auction, while truthful and welfare-optimal, is impractical. In this paper, we tackle a fundamental problem in the design of modern ad auctions. We adopt a ``Myersonian'' approach and study allocation rules that are monotone both in the bid and set of rich ads. We show that such rules can be paired with a payment function to give a truthful auction. Our main technical challenge is designing a monotone rule that yields a good approximation to the optimal welfare. Monotonicity doesn't hold for standard algorithms, e.g. the incremental bang-per-buck order, that give good approximations to ``knapsack-like'' problems such as ours. In fact, we show that no deterministic monotone rule can approximate the optimal welfare within a factor better than $2$ (while there is a non-monotone FPTAS). Our main result is a new, simple, greedy and monotone allocation rule that guarantees a $3$ approximation. In ad auctions in practice, monotone allocation rules are often paired with the so-called Generalized Second Price (GSP) payment rule, which charges the minimum threshold price below which the allocation changes. We prove that, even though our monotone allocation rule paired with GSP is not truthful, its Price of Anarchy (PoA) is bounded. Under standard no overbidding assumption, we prove a pure PoA bound of $6$ and a Bayes-Nash PoA bound of $\frac{6}{(1 - \frac{1}{e})}$. Finally, we experimentally test our algorithms on real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源