论文标题
基于傅立叶的量子信号处理
Fourier-based quantum signal processing
论文作者
论文摘要
实施操作员的一般功能是量子计算中的强大工具。它可以用作多种量子算法的基础,包括矩阵倒置,真实和假想时间的演变以及矩阵幂。量子信号处理是此目标的最新技术状态,假设要转换的操作员被作为作用于扩大希尔伯特空间的单一基质的块。在这里,我们提出了一种来自单一进化中有关该操作员在固定时间的单一进化中给出的Hermitian-操作器功能设计的算法。我们的算法基于单量门门的基本序列的迭代来实现目标函数的傅立叶近似,为此我们证明了表达性。此外,我们提出了一种有效的经典算法,用于从傅立叶系列系数中计算其参数。无论近似序列的程度如何,我们的算法仅使用一个Qubit Ancilla。这与先前的提案形成鲜明对比,该提案需要随着扩展程度增长的辅助尺寸登记册。我们的方法与Trotterater的Hamiltonian模拟方案和混合数字分析方法兼容。
Implementing general functions of operators is a powerful tool in quantum computation. It can be used as the basis for a variety of quantum algorithms including matrix inversion, real and imaginary-time evolution, and matrix powers. Quantum signal processing is the state of the art for this aim, assuming that the operator to be transformed is given as a block of a unitary matrix acting on an enlarged Hilbert space. Here we present an algorithm for Hermitian-operator function design from an oracle given by the unitary evolution with respect to that operator at a fixed time. Our algorithm implements a Fourier approximation of the target function based on the iteration of a basic sequence of single-qubit gates, for which we prove the expressibility. In addition, we present an efficient classical algorithm for calculating its parameters from the Fourier series coefficients. Our algorithm uses only one qubit ancilla regardless the degree of the approximating series. This contrasts with previous proposals, which required an ancillary register of size growing with the expansion degree. Our methods are compatible with Trotterised Hamiltonian simulations schemes and hybrid digital-analog approaches.