论文标题
对短伽马射线爆发的延迟时间分布的观察性推断
Observational Inference on the Delay Time Distribution of Short Gamma-ray Bursts
论文作者
论文摘要
中子星合并的延迟时间分布提供了对二进制进化过程和紧凑型对象二进制的合并速度演变的关键见解。然而,此延迟时间分布的当前观察限制依赖于银河系双中性星星的小样本(具有不确定的选择效果),一个多通用剂量引力波事件以及基于$ r $ - 过程富集的中子恒星合并的间接证据。我们使用68个短伽马射线爆发的68个宿主星系,对延迟时间分布放置新的约束,并利用此结果来推断含有中子星的紧凑型物体二进制物的合并速率演变。我们恢复了$α= -1.83^{+0.35} _ { - 0.39} $(中位数和90%可靠间隔)的幂律斜率,$α<-1.31 $ <-1.31 $ 99%的信誉,最小延迟时间为$ t_ \ mathrm {minrm {min min} = 184^{+67} _ { - 79}〜\ mathrm {myr} $,带有$ t_ \ mathrm {mathrm {min}> 72〜 \ Mathrm {myr} $ 99%可信度,最大延迟时间约为$ t_ \ mathrm {max}> 7.95> 7.95〜\ \ \ \ \ \ \ \ mathimitional。我们发现这些限制与理论期望广泛一致,尽管我们恢复的幂律斜率大大陡峭地比$α= -1 $的传统值高得多,并且我们的最小延迟时间大于通常假定的$ 10〜 \ Mathrm {myr {myr} $的典型假定值。将紧凑型物体二进制系统命运的这种宇宙学探测与双中性星星的银河系种群相结合对于理解有关这两个种群的独特选择效果至关重要。除了探测中性星星合并的红移状态明显大于当前重力波检测器的可能性,还可以通过未来的多通电剂重力波事件来补充我们的结果,还将有助于确定短伽玛射线是否由紧凑的对象二进制二进制二进制二进制二进制合并产生。
The delay time distribution of neutron star mergers provides critical insights into binary evolution processes and the merger rate evolution of compact object binaries. However, current observational constraints on this delay time distribution rely on the small sample of Galactic double neutron stars (with uncertain selection effects), a single multimessenger gravitational wave event, and indirect evidence of neutron star mergers based on $r$-process enrichment. We use a sample of 68 host galaxies of short gamma-ray bursts to place novel constraints on the delay time distribution and leverage this result to infer the merger rate evolution of compact object binaries containing neutron stars. We recover a power-law slope of $α= -1.83^{+0.35}_{-0.39}$ (median and 90% credible interval) with $α< -1.31$ at 99% credibility, a minimum delay time of $t_\mathrm{min} = 184^{+67}_{-79}~\mathrm{Myr}$ with $t_\mathrm{min} > 72~\mathrm{Myr}$ at 99% credibility, and a maximum delay time constrained to $t_\mathrm{max} > 7.95~\mathrm{Gyr}$ at 99% credibility. We find these constraints to be broadly consistent with theoretical expectations, although our recovered power-law slope is substantially steeper than the conventional value of $α= -1$, and our minimum delay time is larger than the typically assumed value of $10~\mathrm{Myr}$. Pairing this cosmological probe of the fate of compact object binary systems with the Galactic population of double neutron stars will be crucial for understanding the unique selection effects governing both of these populations. In addition to probing a significantly larger redshift regime of neutron star mergers than possible with current gravitational wave detectors, complementing our results with future multimessenger gravitational wave events will also help determine if short gamma-ray bursts ubiquitously result from compact object binary mergers.