论文标题
3D小分子和大分子复合物的有效,准确的物理感知的多路复用图神经网络
Efficient and Accurate Physics-aware Multiplex Graph Neural Networks for 3D Small Molecules and Macromolecule Complexes
论文作者
论文摘要
将图形神经网络(GNN)应用于分子科学的最新进展已展示了学习三维(3D)结构表示的力量。但是,大多数现有的GNN遭受了不同相互作用,计算昂贵操作以及对矢量价值的无知的局限性。在这里,我们通过提出一种新型的GNN模型,物理感知的多路复用图神经网络(PAXNET)来解决这些局限性,以有效,准确地学习针对小有机化合物和大分子复合物的3D分子的表示。 Paxnet分离了受分子力学启发的局部和非本地相互作用的建模,并减少了昂贵的角度相关计算。除标量性能外,PaxNet还可以通过学习每个原子的相关矢量来预测矢量特性。为了评估PaxNet的性能,我们将其与两项任务中的最新基线进行了比较。在用于预测量子化学特性的小分子数据集上,PaxNet将预测误差降低了15%,并且比最佳基线减少了73%的记忆。在用于预测蛋白质结合亲和力的大分子数据集上,PaxNet优于最佳基线,同时将记忆消耗降低33%,推理时间降低了85%。因此,PaxNet为大规模的分子学习提供了一种通用,健壮和准确的方法。我们的代码可从https://github.com/zetayue/physics-aware-multiplex-gnn获得。
Recent advances in applying Graph Neural Networks (GNNs) to molecular science have showcased the power of learning three-dimensional (3D) structure representations with GNNs. However, most existing GNNs suffer from the limitations of insufficient modeling of diverse interactions, computational expensive operations, and ignorance of vectorial values. Here, we tackle these limitations by proposing a novel GNN model, Physics-aware Multiplex Graph Neural Network (PaxNet), to efficiently and accurately learn the representations of 3D molecules for both small organic compounds and macromolecule complexes. PaxNet separates the modeling of local and non-local interactions inspired by molecular mechanics, and reduces the expensive angle-related computations. Besides scalar properties, PaxNet can also predict vectorial properties by learning an associated vector for each atom. To evaluate the performance of PaxNet, we compare it with state-of-the-art baselines in two tasks. On small molecule dataset for predicting quantum chemical properties, PaxNet reduces the prediction error by 15% and uses 73% less memory than the best baseline. On macromolecule dataset for predicting protein-ligand binding affinities, PaxNet outperforms the best baseline while reducing the memory consumption by 33% and the inference time by 85%. Thus, PaxNet provides a universal, robust and accurate method for large-scale machine learning of molecules. Our code is available at https://github.com/zetayue/Physics-aware-Multiplex-GNN.