论文标题

凸优化层的双重分解,以在医学图像中持续关注

Dual Decomposition of Convex Optimization Layers for Consistent Attention in Medical Images

论文作者

Ron, Tom, Weiler-Sagie, Michal, Hazan, Tamir

论文摘要

在医学中整合机器学习模型的关键问题是解释其推理的能力。流行的解释方法已经显示出自然图像识别的令人满意的结果,但是在医学图像分析中,其中许多方法提供了部分和嘈杂的解释。最近,注意机制在预测性能和可解释的质量方面都表现出了令人信服的结果。关注的基本特征是,它利用输入的显着部分,这有助于模型的预测。为此,我们的工作着重于注意力分布的解释价值。我们提出了一种多层注意机制,该机制可以使用凸优化在卷积层之间实施一致的解释。我们应用二元性来分解层之间的一致性约束,通过重新聚集其注意力概率分布。我们进一步建议通过优化我们的目标来学习双重见证。因此,我们的实施使用标准的背部传播,因此非常有效。在保留预测性能的同时,我们提出的方法利用了弱注释的医学成像数据,并为模型的预测提供了完整而忠实的解释。

A key concern in integrating machine learning models in medicine is the ability to interpret their reasoning. Popular explainability methods have demonstrated satisfactory results in natural image recognition, yet in medical image analysis, many of these approaches provide partial and noisy explanations. Recently, attention mechanisms have shown compelling results both in their predictive performance and in their interpretable qualities. A fundamental trait of attention is that it leverages salient parts of the input which contribute to the model's prediction. To this end, our work focuses on the explanatory value of attention weight distributions. We propose a multi-layer attention mechanism that enforces consistent interpretations between attended convolutional layers using convex optimization. We apply duality to decompose the consistency constraints between the layers by reparameterizing their attention probability distributions. We further suggest learning the dual witness by optimizing with respect to our objective; thus, our implementation uses standard back-propagation, hence it is highly efficient. While preserving predictive performance, our proposed method leverages weakly annotated medical imaging data and provides complete and faithful explanations to the model's prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源