论文标题

Nonabelian产品模型总和

The nonabelian product modulo sum

论文作者

Corson, Samuel M.

论文摘要

结果表明,如果$ \ {h_n \} _ {n \ inω} $是一系列无关的组序列,则$ 1 <| h_n | \ leq 2^{\ aleph_0} $,那么拓扑师的产品模块有限单词(直至同构)独立于序列的选择。这与Abelian的环境形成鲜明对比:如果$ \ {a_n \} _ {n \ inω} $是一系列无数无限的无扭矩的序列,那么产品modulo sum $ $ \ prod_ prod_ {n \ inΩ 顺序。

It is shown that if $\{H_n\}_{n \in ω}$ is a sequence of groups without involutions, with $1 < |H_n| \leq 2^{\aleph_0}$, then the topologist's product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in ω}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in ω} A_n/\bigoplus_{n \in ω} A_n$ is dependent on the sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源