论文标题
Nonabelian产品模型总和
The nonabelian product modulo sum
论文作者
论文摘要
结果表明,如果$ \ {h_n \} _ {n \ inω} $是一系列无关的组序列,则$ 1 <| h_n | \ leq 2^{\ aleph_0} $,那么拓扑师的产品模块有限单词(直至同构)独立于序列的选择。这与Abelian的环境形成鲜明对比:如果$ \ {a_n \} _ {n \ inω} $是一系列无数无限的无扭矩的序列,那么产品modulo sum $ $ \ prod_ prod_ {n \ inΩ 顺序。
It is shown that if $\{H_n\}_{n \in ω}$ is a sequence of groups without involutions, with $1 < |H_n| \leq 2^{\aleph_0}$, then the topologist's product modulo the finite words is (up to isomorphism) independent of the choice of sequence. This contrasts with the abelian setting: if $\{A_n\}_{n \in ω}$ is a sequence of countably infinite torsion-free abelian groups, then the isomorphism class of the product modulo sum $\prod_{n \in ω} A_n/\bigoplus_{n \in ω} A_n$ is dependent on the sequence.