论文标题

加速随机动力学模型的推断

Accelerating inference for stochastic kinetic models

论文作者

Lowe, Tom E., Golightly, Andrew, Sherlock, Chris

论文摘要

随机动力学模型(SKM)越来越多地用于说明流行病学,种群生态学和系统生物学等领域中物种相互作用所表现出的固有随机性。物种数量是使用连续的随机过程对物种进行建模的,并且根据感兴趣的应用领域,这通常会采取马尔可夫跳跃过程或ITô扩散过程的形式。这些模型的广泛使用通常被其计算复杂性所排除。特别是,由于观察到的数据可能性的难以执行,因此在任何一个建模框架中执行完全贝叶斯的推断都是具有挑战性的,因此需要使用计算密集型技术,例如粒子马尔可夫链蒙特卡洛(粒子MCMC)。建议通过利用直接从跳跃或扩散过程得出的廉价替代物的障碍来提高这种方法的计算和统计效率。替代物以三种方式使用:在设计基于梯度的参数建议时,以构建适当的桥梁以及在延迟接受步骤的第一阶段。确切针对感兴趣后的最终方法,比标准粒子MCMC实施的效率可实现巨大提高。

Stochastic kinetic models (SKMs) are increasingly used to account for the inherent stochasticity exhibited by interacting populations of species in areas such as epidemiology, population ecology and systems biology. Species numbers are modelled using a continuous-time stochastic process, and, depending on the application area of interest, this will typically take the form of a Markov jump process or an Itô diffusion process. Widespread use of these models is typically precluded by their computational complexity. In particular, performing exact fully Bayesian inference in either modelling framework is challenging due to the intractability of the observed data likelihood, necessitating the use of computationally intensive techniques such as particle Markov chain Monte Carlo (particle MCMC). It is proposed to increase the computational and statistical efficiency of this approach by leveraging the tractability of an inexpensive surrogate derived directly from either the jump or diffusion process. The surrogate is used in three ways: in the design of a gradient-based parameter proposal, to construct an appropriate bridge and in the first stage of a delayed-acceptance step. The resulting approach, which exactly targets the posterior of interest, offers substantial gains in efficiency over a standard particle MCMC implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源