论文标题

对话组检测时空上下文

Conversation Group Detection With Spatio-Temporal Context

论文作者

Tan, Stephanie, Tax, David M. J., Hung, Hayley

论文摘要

在这项工作中,我们提出了一种方法,用于从台式相机录音中检测到鸡尾酒会和网络活动等社交场景中的对话组。我们将对话组的检测视为一个学习问题,可以从利用周围环境的空间上下文以及人际动态中固有的时间上下文中受益,这反映在人类行为信号的时间动态中,这一方面在最近的先前工作中尚未解决。这激发了我们的方法,该方法由一个基于动态LSTM的深度学习模型组成,该模型预测连续成对亲和力值,表明两个人在同一对话组中的可能性有多大。这些亲和力价值也是及时的,因为即使小组成员的基础真理是二进制的,关系和群体成员也不会立即发生。使用预测的亲和力值,我们将基于主体设置提取的图形聚类方法应用以识别对话组。我们基准针对多个社交互动数据集的既定方法进行基准测试。我们的结果表明,所提出的方法改善了在对话组标签中具有更多时间粒度的数据中的群体检测性能。此外,我们在与对话组检测有关的预测亲和力值中提供了分析。最后,我们在预测框架中证明了预测亲和力值的可用性,以预测给定的预测范围的组成员资格。

In this work, we propose an approach for detecting conversation groups in social scenarios like cocktail parties and networking events, from overhead camera recordings. We posit the detection of conversation groups as a learning problem that could benefit from leveraging the spatial context of the surroundings, and the inherent temporal context in interpersonal dynamics which is reflected in the temporal dynamics in human behavior signals, an aspect that has not been addressed in recent prior works. This motivates our approach which consists of a dynamic LSTM-based deep learning model that predicts continuous pairwise affinity values indicating how likely two people are in the same conversation group. These affinity values are also continuous in time, since relationships and group membership do not occur instantaneously, even though the ground truths of group membership are binary. Using the predicted affinity values, we apply a graph clustering method based on Dominant Set extraction to identify the conversation groups. We benchmark the proposed method against established methods on multiple social interaction datasets. Our results showed that the proposed method improves group detection performance in data that has more temporal granularity in conversation group labels. Additionally, we provide an analysis in the predicted affinity values in relation to the conversation group detection. Finally, we demonstrate the usability of the predicted affinity values in a forecasting framework to predict group membership for a given forecast horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源