论文标题

使用量子模拟光学相干断层扫描和Machine Learnin来检索分散曲线

Towards retrieving dispersion profiles using quantum-mimic Optical Coherence Tomography and Machine Learnin

论文作者

Maliszewski, Krzysztof A., Kolenderski, Piotr, Vetrova, Varvara, Kolenderska, Sylwia M.

论文摘要

量子模拟光学相干断层扫描中的伪影被认为是有害的,因为它们甚至是为最简单的物体而扰乱图像的。它们是自相关的副作用,它用于模仿该方法背后的量子纠缠中。有趣的是,自相关将某些特征印记到人工制品上 - 它使其形状和特征取决于伪影与对应的层所表现出的分散量。人工制品与层的分散体之间的这种独特的关系可用于确定对象层的组速度分散(GVD)值,并基于它们构建一个分散对比的深度曲线。 GVD配置文件的检索是通过机器学习实现的。在训练过程中,神经网络了解GVD与人工制品之间的形状和特征之间的关系,因此,它能够为对象的分散概况提供良好的定性代表,从未见过的数据:计算机生成的单个分散层和玻璃实验件。

Artefacts in quantum-mimic Optical Coherence Tomography are considered detrimental because they scramble the images even for the simplest objects. They are a side effect of autocorrelation which is used in the quantum entanglement mimicking algorithm behind this method. Interestingly, the autocorrelation imprints certain characteristics onto an artefact - it makes its shape and characteristics depend on the amount of dispersion exhibited by the layer that artefact corresponds to. This unique relationship between the artefact and the layer's dispersion can be used to determine Group Velocity Dispersion (GVD) values of object layers and, based on them, build a dispersion-contrasted depth profile. The retrieval of GVD profiles is achieved via Machine Learning. During training, a neural network learns the relationship between GVD and the artefacts' shape and characteristics, and consequently, it is able to provide a good qualitative representation of object's dispersion profile for never-seen-before data: computer-generated single dispersive layers and experimental pieces of glass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源