论文标题
编程分子系统以模拟学习尖峰神经元
Programming molecular systems to emulate a learning spiking neuron
论文作者
论文摘要
Hebbian理论试图解释大脑中的神经元如何适应刺激,以实现学习。 Hebbian学习的一个有趣特征是,这是一种无监督的方法,因此,不需要反馈,因此在系统必须自动学习的情况下适合它。本文探讨了如何设计分子系统以显示这种原始智能行为,并提出了第一个化学反应网络(CRN),该网络(CRN)可以在任意多个输入通道中表现出自治的HEBBIAN学习。该系统模仿了尖峰神经元,我们证明它可以学习传入输入的统计偏见。基本CRN是一组最小,热力学上合理的微可逆化学方程组,可以根据其能量需求进行分析。但是,为了探索如何从头设计这样的化学系统,我们还提出了一个基于酶驱动的分室反应的扩展版本。最后,我们还展示了建立在DNA链位移范式上的纯DNA系统如何实现神经元动力学。我们的分析为探索生物环境中的自主学习提供了令人信服的蓝图,使我们更接近实现真正的合成生物智能。
Hebbian theory seeks to explain how the neurons in the brain adapt to stimuli, to enable learning. An interesting feature of Hebbian learning is that it is an unsupervised method and as such, does not require feedback, making it suitable in contexts where systems have to learn autonomously. This paper explores how molecular systems can be designed to show such proto-intelligent behaviours, and proposes the first chemical reaction network (CRN) that can exhibit autonomous Hebbian learning across arbitrarily many input channels. The system emulates a spiking neuron, and we demonstrate that it can learn statistical biases of incoming inputs. The basic CRN is a minimal, thermodynamically plausible set of micro-reversible chemical equations that can be analysed with respect to their energy requirements. However, to explore how such chemical systems might be engineered de novo, we also propose an extended version based on enzyme-driven compartmentalised reactions. Finally, we also show how a purely DNA system, built upon the paradigm of DNA strand displacement, can realise neuronal dynamics. Our analysis provides a compelling blueprint for exploring autonomous learning in biological settings, bringing us closer to realising real synthetic biological intelligence.