论文标题
MMFormer:用于脑肿瘤分割的多模式学习的多模式医疗变压器
mmFormer: Multimodal Medical Transformer for Incomplete Multimodal Learning of Brain Tumor Segmentation
论文作者
论文摘要
从磁共振成像(MRI)中进行精确的脑肿瘤分割,需要对多模式图像的联合学习。但是,在临床实践中,并非总是有可能获得一组完整的MRI,而缺失模态的问题会导致现有多模式分割方法的严重性能降解。在这项工作中,我们提出了将变压器用于多模式脑肿瘤分割的首次尝试,该尝试对可用模式的任何组合子集都是可靠的。具体而言,我们提出了一种新型的多模式医疗变压器(MMMFORMER),用于使用三个主要组成部分:混合模态特异性的编码器,该编码器桥接卷积编码器和一个模式模型中局部和全局上下文模型的模式内变压器;一种模式间变压器,用于建立和对齐模态跨模态的远程相关性,以与肿瘤区域相对应的全局语义特征。一个解码器,与模态不变的特征进行渐进的上采样和融合,以生成可靠的分割。此外,在编码器和解码器中都引入了辅助正规化器,以进一步增强模型对不完整方式的鲁棒性。我们对公共批评的大量实验$ 2018 $ $数据集用于脑肿瘤细分。结果表明,所提出的MMFORMER的表现优于几乎所有不完全模态的亚群的多模式脑肿瘤分割的最先进方法,尤其是在肿瘤分割的骰子上平均提高了19.07%,只有一种可用的模式。该代码可在https://github.com/yaozhang93/mmformer上找到。
Accurate brain tumor segmentation from Magnetic Resonance Imaging (MRI) is desirable to joint learning of multimodal images. However, in clinical practice, it is not always possible to acquire a complete set of MRIs, and the problem of missing modalities causes severe performance degradation in existing multimodal segmentation methods. In this work, we present the first attempt to exploit the Transformer for multimodal brain tumor segmentation that is robust to any combinatorial subset of available modalities. Concretely, we propose a novel multimodal Medical Transformer (mmFormer) for incomplete multimodal learning with three main components: the hybrid modality-specific encoders that bridge a convolutional encoder and an intra-modal Transformer for both local and global context modeling within each modality; an inter-modal Transformer to build and align the long-range correlations across modalities for modality-invariant features with global semantics corresponding to tumor region; a decoder that performs a progressive up-sampling and fusion with the modality-invariant features to generate robust segmentation. Besides, auxiliary regularizers are introduced in both encoder and decoder to further enhance the model's robustness to incomplete modalities. We conduct extensive experiments on the public BraTS $2018$ dataset for brain tumor segmentation. The results demonstrate that the proposed mmFormer outperforms the state-of-the-art methods for incomplete multimodal brain tumor segmentation on almost all subsets of incomplete modalities, especially by an average 19.07% improvement of Dice on tumor segmentation with only one available modality. The code is available at https://github.com/YaoZhang93/mmFormer.