论文标题

氢/空气混合物中的爆炸波与圆形水云之间的相互作用

Interactions between a propagating detonation wave and circular water cloud in hydrogen/air mixture

论文作者

Xu, Yong, Zhang, Huangwei

论文摘要

研究了传播氢/空气爆炸波与圆形水云之间的相互作用。应用了涉及双向气管偶联的欧拉拉lagangian方法。考虑了不同的液滴(直径,浓度)和云(直径)特性。结果表明,液滴的大小,浓度和云半径对爆炸波的峰值压力轨迹具有显着影响。确定了三种传播模式:扰动的繁殖,背风重新定位和爆炸灭绝。从气体和液滴数量的不稳定的演变中分析了背风重定位。爆炸是由于上下衍射爆炸的冲击聚焦而重新发射的。当爆炸波越过云时,水滴的瓦解会进行。此外,当爆炸波通过较大的云时,爆炸灭绝的特征是快速褪色的峰值压力轨迹,并且在冲击聚焦区域中没有局部自动定位。还研究了在灭绝过程中受到冲击区域的热化学结构的进化。分析了质量,能量和爆炸成功和失败动量的转移率。此外,参数研究表明,当液滴浓度增加时,爆炸的临界云大小会减少。但是,当液滴浓度超过0.84 kg/m3时,由于小滴小滴,临界云大小会微不足道的影响。观察到两相流体界面的不稳定性,并研究了云进化的机理,并通过液滴,涡度,密度 /压力梯度大小和气体速度的分布进行了研究。

Interactions between a propagating hydrogen/air detonation wave and circular water cloud are studied. Eulerian Lagrangian method involving two-way gas-droplet coupling is applied. Different droplet (diameter, concentration) and cloud (diameter) properties are considered. Results show that droplet size, concentration and cloud radius have significant effects on peak pressure trajectory of the detonation wave. Three propagation modes are identified: perturbed propagation, leeward re-detonation, and detonation extinction. Leeward re-detonation is analyzed from unsteady evolutions of gas and liquid droplet quantities. The detonation is re-initiated by a local hot spot from shock focusing of upper and lower diffracted detonations. Disintegration of water droplets proceeds when the detonation wave crosses the cloud. In addition, detonation extinction is featured by quickly fading peak pressure trajectories when the detonation wave passes the larger cloud, and no local autoignition occurs in the shock focusing area. Evolutions of thermochemical structures from the shocked area in an extinction process are also studied. The transfer rates of mass, energy and momentum of detonation success and failure are analyzed. Moreover, parametric studies demonstrate that the critical cloud size to quench a detonation decreases when the droplet concentration is increased. However, when the droplet concentration is beyond 0.84 kg/m3, the critical cloud size is negligibly influenced due to small droplets. Two-phase fluid interfacial instability is observed, and the mechanism of cloud evolution is studied with the distributions of droplet, vorticity, density / pressure gradient magnitudes, and gas velocity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源