论文标题

受限的Birkhoff多面体和Ehrhart时期崩溃

Restricted Birkhoff polytopes and Ehrhart period collapse

论文作者

Alexandersson, Per, Hopkins, Sam, Zaimi, Gjergji

论文摘要

我们表明,通过施加额外的不平等,限制“最长增加的子序列”的额外不平等,具有ehrhart quasi-polynomials,即使是诚实的多项式,即使它们只是合理的多面体,也是诚实的多项式。我们通过将连续的,分段线性的两次试验定义到特定的gelfand-tsetlin polytope来做到这一点。该培训不是一个积分的等效性,而是以适当的方式尊重晶格点,以暗示两个多面体具有相同的ehrhart(quasi-)多项式。实际上,两者本质上是罗宾逊·塞格尼斯特·科纳特的对应关系。

We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the "longest increasing subsequence" have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand-Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson-Schensted-Knuth correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源