论文标题
$ m_2 $ ranks的渐近公式
Asymptotic formula for the $M_2$-ranks of overpartitions
论文作者
论文摘要
令$ \ OVILLINE {N} _2(a,c,n)$为$ n $的超级分支的数量,其$ m_2 $ -lank与$ a $ a $ modulo $ c $一致。在本文中,我们获得了$ \ Overline {n} _2(a,c,n)的渐近公式,利用Ingham Tauberian定理。作为应用程序,我们以$ \ overline {n} _2(a,c,n)$(包括其严格的凹陷和log-concavity)来得出有关$ \ overline {n} _2(a,c,n)$的不等式。
Let $\overline{N}_2(a,c,n)$ be the number of overpartitions of $n$ whose the $M_2$-rank is congruent to $a$ modulo $c$. In this paper, we obtain the asymptotic formula of $\overline{N}_2(a,c,n)$ utilizing the Ingham Tauberian Theorem. As applications, we derive inequalities concerning with $\overline{N}_2(a,c,n)$ including its strict concavity and log-concavity.