论文标题

LDRNET:在移动设备上启用实时文档本地化

LDRNet: Enabling Real-time Document Localization on Mobile Devices

论文作者

Wu, Han, Qian, Holland, Wu, Huaming, van Moorsel, Aad

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

While Identity Document Verification (IDV) technology on mobile devices becomes ubiquitous in modern business operations, the risk of identity theft and fraud is increasing. The identity document holder is normally required to participate in an online video interview to circumvent impostors. However, the current IDV process depends on an additional human workforce to support online step-by-step guidance which is inefficient and expensive. The performance of existing AI-based approaches cannot meet the real-time and lightweight demands of mobile devices. In this paper, we address those challenges by designing an edge intelligence-assisted approach for real-time IDV. Aiming at improving the responsiveness of the IDV process, we propose a new document localization model for mobile devices, LDRNet, to Localize the identity Document in Real-time. On the basis of a lightweight backbone network, we build three prediction branches for LDRNet, the corner points prediction, the line borders prediction and the document classification. We design novel supplementary targets, the equal-division points, and use a new loss function named Line Loss, to improve the speed and accuracy of our approach. In addition to the IDV process, LDRNet is an efficient and reliable document localization alternative for all kinds of mobile applications. As a matter of proof, we compare the performance of LDRNet with other popular approaches on localizing general document datasets. The experimental results show that LDRNet runs at a speed up to 790 FPS which is 47x faster, while still achieving comparable Jaccard Index(JI) in single-model and single-scale tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源