论文标题

CNN对软错误的快速准确误差模拟

Fast and Accurate Error Simulation for CNNs against Soft Errors

论文作者

Bolchini, Cristiana, Cassano, Luca, Miele, Antonio, Toschi, Alessandro

论文摘要

针对安全/关键任务应用的基于AI的计算的绝佳寻求激发了对评估应用W.R.T.鲁棒性的方法的兴趣。不仅其训练/调整,而且由于故障,特别是软错误而导致的错误,影响了基础硬件。存在两种策略:体系结构级故障注入和应用级功能误差模拟。我们提供了一个通过错误模拟引擎对卷积神经网络(CNN)的可靠性分析的框架,该引擎利用了从详细的故障注入活动中提取的一组验证的错误模型。这些错误模型是根据由故障引起的CNN操作员输出的损坏模式定义的,并弥合了故障注入和误差模拟之间的差距,从而利用了两种方法的优势。我们将我们的方法与SASSIFI进行了比较,以进行功能误差模拟W.R.T.的准确性。故障注射,并针对tensorfi进行误差模拟策略的速度。实验结果表明,我们的方法可达到断层效应的99 \%精度W.R.T. sassifi,速度从44倍到63x W.R.T. Tensorfi,仅实现有限的误差模型。

The great quest for adopting AI-based computation for safety-/mission-critical applications motivates the interest towards methods for assessing the robustness of the application w.r.t. not only its training/tuning but also errors due to faults, in particular soft errors, affecting the underlying hardware. Two strategies exist: architecture-level fault injection and application-level functional error simulation. We present a framework for the reliability analysis of Convolutional Neural Networks (CNNs) via an error simulation engine that exploits a set of validated error models extracted from a detailed fault injection campaign. These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults and bridge the gap between fault injection and error simulation, exploiting the advantages of both approaches. We compared our methodology against SASSIFI for the accuracy of functional error simulation w.r.t. fault injection, and against TensorFI in terms of speedup for the error simulation strategy. Experimental results show that our methodology achieves about 99\% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t. TensorFI, that only implements a limited set of error models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源