论文标题
与MMA的多参数持久模块的快速,稳定和有效的近似
Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA
论文作者
论文摘要
在本文中,我们介绍了一个新的参数化拓扑不变性家族,以候选分解形式,用于多参数持久模块。我们证明我们的候选分解是可控的近似值:当限制可以将可以分解为间隔汇总的模块时,我们就可以在候选分解与真实的基础模块之间建立理论结果,以标准的相互交流和瓶颈距离。此外,即使基础模块不承认这种分解,我们的候选分解也是稳定的不变性。基础模块中的小扰动导致候选分解中的小扰动。然后,我们介绍MMA(多溶位模块近似):一种用于计算此类不变式稳定实例的算法,该算法基于纤维条形码和精确匹配,这两个结构源自单参数持久性的单参数理论。根据设计,MMA可以处理任意数量的过滤,并且具有界定的复杂性和运行时间。最后,我们提供了经验证据,以验证MMA在几个数据集中的概括能力和运行时间的速度。
In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.