论文标题

使用中心聚类网络对小猪的遮挡实例分割

Occlusion-Resistant Instance Segmentation of Piglets in Farrowing Pens Using Center Clustering Network

论文作者

Huang, Endai, Mao, Axiu, Hou, Junhui, Wu, Yongjian, Xu, Weitao, Ceballos, Maria Camila, Parsons, Thomas D., Liu, Kai

论文摘要

计算机视觉可以开发新方法来监测动物的行为,健康和福利。实例分割是用于检测感兴趣的个体动物的计算机视觉中的高精度方法。该方法可用于对动物的深入分析,例如从视频和图像中检查其微妙的互动行为。但是,现有的基于深度学习的实例细分方法主要是基于公共数据集开发的,这在很大程度上忽略了严重的遮挡问题。因此,这些方法在涉及物体闭塞的现实应用应用中存在局限性,例如在猪场上使用的钢笔系统,其中cafly脚的板条箱经常会妨碍母猪和小猪。在本文中,我们调整了最初设计用于计数以实现实例分割的中心聚类网络,称为CCLUSNET-INSEG。具体而言,cclusnet-inseg使用每个像素来预测对象中心并追踪这些中心以基于群集结果形成掩模,该结果由用于分割和中心偏移矢量图的网络组成,基于密度的基于密度的基于密度的空间群集使用噪声(DBSCAN)算法(DBSCAN)算法,中心 - 掩码(C2M),以及静止状态(C2M),以及centmers(C2M),以及centmers(congors),并将其掩盖(RC)(RC)(RC)。总共从三个封闭和三个中半开的板条箱收集的六个视频中提取了4,600张图像,以训练和验证我们的方法。 CCLUSNET-INSEG达到的平均平均精度(MAP)为84.1,并且在本研究中比所有其他方法都优于所有其他方法。我们进行全面的消融研究,以证明我们方法的核心模块的优势和有效性。此外,我们将cclusnet-inseg应用于多对象跟踪以进行动物监测,并且可以作为相结合输出的预测对象中心可以用作对象位置的耐遮挡抗性表示。

Computer vision enables the development of new approaches to monitor the behavior, health, and welfare of animals. Instance segmentation is a high-precision method in computer vision for detecting individual animals of interest. This method can be used for in-depth analysis of animals, such as examining their subtle interactive behaviors, from videos and images. However, existing deep-learning-based instance segmentation methods have been mostly developed based on public datasets, which largely omit heavy occlusion problems; therefore, these methods have limitations in real-world applications involving object occlusions, such as farrowing pen systems used on pig farms in which the farrowing crates often impede the sow and piglets. In this paper, we adapt a Center Clustering Network originally designed for counting to achieve instance segmentation, dubbed as CClusnet-Inseg. Specifically, CClusnet-Inseg uses each pixel to predict object centers and trace these centers to form masks based on clustering results, which consists of a network for segmentation and center offset vector map, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, Centers-to-Mask (C2M), and Remain-Centers-to-Mask (RC2M) algorithms. In all, 4,600 images were extracted from six videos collected from three closed and three half-open farrowing crates to train and validate our method. CClusnet-Inseg achieves a mean average precision (mAP) of 84.1 and outperforms all other methods compared in this study. We conduct comprehensive ablation studies to demonstrate the advantages and effectiveness of core modules of our method. In addition, we apply CClusnet-Inseg to multi-object tracking for animal monitoring, and the predicted object center that is a conjunct output could serve as an occlusion-resistant representation of the location of an object.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源