论文标题

奇数环形纳坦类别和GL(1 | 1)

Odd annular Bar-Natan category and gl(1|1)

论文作者

Necheles, Casey L., Wehrli, Stephan M.

论文摘要

我们介绍了两个单体超级类别:奇数点templey-lieb类别$ \ MATHCAL {t \!l} _ {o,\ bulter}(δ)$,这是Brundan和Ellis和Odd Annular Bar-Natan的奇数temperley-lieb类别的概括。 $ \ MATHCAL {Bn} _ {\!o}(\ Mathbb {a})$,它概括了Putyra研究的奇数bar-natan类别。然后,如果$δ= 0 $,我们表明它们之间存在类别的等效性。我们使用这种等价来更好地理解谎言superalgebra $ \ mathfrak {gl}(1 | 1)$在格里格斯比(Grigsby)和第二作者发现的厚实的安努鲁斯(Annulus)中的奇数khovanov同源性上。

We introduce two monoidal supercategories: the odd dotted Temperley-Lieb category $\mathcal{T\!L}_{o,\bullet}(δ)$, which is a generalization of the odd Temperley-Lieb category studied by Brundan and Ellis, and the odd annular Bar-Natan category $\mathcal{BN}_{\!o}(\mathbb{A})$, which generalizes the odd Bar-Natan category studied by Putyra. We then show there is an equivalence of categories between them if $δ=0$. We use this equivalence to better understand the action of the Lie superalgebra $\mathfrak{gl}(1|1)$ on the odd Khovanov homology of a knot in a thickened annulus found by Grigsby and the second author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源