论文标题

通过离散的经验插值对非线性动力学系统的梯度保留过度还原

Gradient-preserving hyper-reduction of nonlinear dynamical systems via discrete empirical interpolation

论文作者

Pagliantini, Cecilia, Vismara, Federico

论文摘要

这项工作提出了一种针对非线性参数动力学系统的高还原方法,其特征在于梯度领域,例如汉密尔顿系统和梯度流。梯度结构与不变性的保护或耗散有关,因此在系统的物理特性描述中起着至关重要的作用。非线性梯度场的传统高还原产生有效的近似值,但是缺乏梯度结构。我们专注于汉密尔顿梯度,我们建议首先分解哈密顿量的非线性部分,映射到合适的缩小空间中,为D术语的总和,每个术语的总和都以对系统状态的稀疏依赖性为特征。然后,通过离散的D值非线性函数的Jacobian的离散经验插值(DEIM)获得过度还原的近似值。产生的超降低模型保留了梯度结构,其计算复杂性与完整模型的大小无关。此外,先验误差估计表明,超还原模型会收敛到还原模型,而哈密顿量则渐近地保存。每当非线性汉密尔顿梯度在全球范围内不可降低时,即其进化需要高维的DEIM近似空间,就会执行自适应策略。这包括通过DEIM基础的低级校正来更新过度降低的哈密顿量。与完整模型相比,数值测试证明了所提出的方法对一般非线性运算符和运行时加速的适用性。

This work proposes a hyper-reduction method for nonlinear parametric dynamical systems characterized by gradient fields such as Hamiltonian systems and gradient flows. The gradient structure is associated with conservation of invariants or with dissipation and hence plays a crucial role in the description of the physical properties of the system. Traditional hyper-reduction of nonlinear gradient fields yields efficient approximations that, however, lack the gradient structure. We focus on Hamiltonian gradients and we propose to first decompose the nonlinear part of the Hamiltonian, mapped into a suitable reduced space, into the sum of d terms, each characterized by a sparse dependence on the system state. Then, the hyper-reduced approximation is obtained via discrete empirical interpolation (DEIM) of the Jacobian of the derived d-valued nonlinear function. The resulting hyper-reduced model retains the gradient structure and its computationally complexity is independent of the size of the full model. Moreover, a priori error estimates show that the hyper-reduced model converges to the reduced model and the Hamiltonian is asymptotically preserved. Whenever the nonlinear Hamiltonian gradient is not globally reducible, i.e. its evolution requires high-dimensional DEIM approximation spaces, an adaptive strategy is performed. This consists in updating the hyper-reduced Hamiltonian via a low-rank correction of the DEIM basis. Numerical tests demonstrate the applicability of the proposed approach to general nonlinear operators and runtime speedups compared to the full and the reduced models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源