论文标题

气体摩擦的多孔系统的动力不稳定性

Dynamical Instability in Multi-Orbiter Systems with Gas Friction

论文作者

Li, Jiaru, Rodet, Laetitia, Lai, Dong

论文摘要

众所周知,如果行星之间的间距太小,则众所周知,密切包装的多个星光系统会经历动态不稳定性。这种不稳定性可以通过从气体圆盘上作用于行星的摩擦力来缓解这种不稳定。类似的情况也适用于超级质量黑洞周围嵌入AGN光盘中的恒星质量黑洞。在本文中,我们使用$ n $体的集成来评估轨道偏心率的摩擦阻尼如何影响多种行星间距和行星与明星质量比的动力不稳定性的增长。我们发现,系统的稳定性取决于减速时间尺度$τ$相对于零摩擦不稳定性增长时间尺度$ t _ {\ rm inst} $。在两样式系统中,如果$ t _ {\ rm inst} \gtrsimτ$,摩擦阻尼可以稳定动态演变。使用三个行星,稳定需要$ t _ {\ rm inst} \ gtrsim10τ-100τ$。当行星轨道之间的分离足够小时,$ t _ {\ rm inst} $可能小于行星之间的典型期,这使得摩擦稳定不太可能发生。随着轨道间距的增加,不稳定性时间尺度往往平均成倍增长,但根据行星的初始轨道阶段,它可能会因几个数量级而变化。通常,稳定区域(在较大的轨道间距)和不稳定区域(在小轨道间距处)通过过渡区分开,在该区域中不能保证系统的(在)稳定性区域。我们还设计了一个线性地图来分析“行星 +测试量”系统的动态不稳定性,并且我们发现与$ n $ body模拟的定性结果相似。

Closely-packed multi-planet systems are known to experience dynamical instability if the spacings between the planets are too small. Such instability can be tempered by the frictional forces acting on the planets from gaseous discs. A similar situation applies to stellar-mass black holes embedded in AGN discs around supermassive black holes. In this paper, we use $N$-body integrations to evaluate how the frictional damping of orbital eccentricity affects the growth of dynamical instability for a wide range of planetary spacing and planet-to-star mass ratios. We find that the stability of a system depends on the damping timescale $τ$ relative to the zero-friction instability growth timescale $t_{\rm inst}$. In a two-planet system, the frictional damping can stabilise the dynamical evolution if $t_{\rm inst}\gtrsimτ$. With three planets, $t_{\rm inst} \gtrsim 10τ- 100τ$ is needed for stabilisation. When the separations between the planetary orbits are sufficiently small, $t_{\rm inst}$ can be less than the synodic period between the planets, which makes frictional stabilisation unlikely to occur. As the orbital spacing increases, the instability timescale tends to grow exponentially on average, but it can vary by a few orders of magnitude depending on the initial orbital phases of the planets. In general, the stable region (at large orbital spacings) and unstable region (at small orbital spacings) are separated by a transition zone, in which the (in)stability of the system is not guaranteed. We also devise a linear map to analyse the dynamical instability of the "planet + test-mass" system, and we find qualitatively similar results to the $N$-body simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源