论文标题
熵和纠缠在二分的准 - 休米特系统及其赫米尔式同行
Entropy and entanglement in a bipartite quasi-Hermitian system and its Hermitian counterparts
论文作者
论文摘要
我们认为量子振荡器耦合到$ n $其他振荡器的浴缸。总系统随着准热哈密顿量的发展而演变。与之相关的是一个遗传系统的家族,由统一地图$ W $进行参数。我们的主要目标是找到$ w $对熵和纠缠在Hermitian系统中的影响。我们明确计算所有Hermitian系统的单个振荡器的密度降低的密度矩阵,并表明,无论$ W $,他们的von Neumann熵都以一个共同的时期振荡,这是非赫米蒂安系统的两倍。我们表明,一般而言,振荡器和浴室几乎纠缠在一起。虽然纠缠量取决于$ w $的选择,但它在一段时间内平均$ w $独立。这些结果描述了所有与给定非热者相关的Hermitian系统的物理特性中的一些普遍性。
We consider a quantum oscillator coupled to a bath of $N$ other oscillators. The total system evolves with a quasi-Hermitian Hamiltonian. Associated to it is a family of Hermitian systems, parameterized by a unitary map $W$. Our main goal is to find the influence of $W$ on the entropy and the entanglement in the Hermitian systems. We calculate explicitly the reduced density matrix of the single oscillator for all Hermitian systems and show that, regardless of $W$, their von Neumann entropy oscillates with a common period which is twice that of the non-Hermitian system. We show that generically, the oscillator and the bath are entangled for almost all times. While the amount of entanglement depends on the choice of $W$, it is independent of $W$ when averaged over a period. These results describe some universality in the physical properties of all Hermitian systems associated to a given non-Hermitian one.