论文标题

加权模型以双宽度计数

Weighted Model Counting with Twin-Width

论文作者

Ganian, Robert, Pokrývka, Filip, Schidler, André, Simonov, Kirill, Szeider, Stefan

论文摘要

Bonnet等。 (FOCS 2020)引入了图形不变的双宽度,并表明许多NP硬化问题对于有界双宽度的图形是可以处理的,从而概括了其他宽度测量的相似结果,包括树宽度和clique宽度。在本文中,我们研究了双宽度用于解决命题满足问题(SAT)和命题模型计数的使用。我们特别专注于有限的加权模型计数(BWMC),该模型计数(BWMC)将CNF公式$ f $以及绑定的$ k $以及最多具有$ k $正面文字的所有加权总和。 BWMC不仅概括了SAT,还概括了(加权)模型计数。 我们开发了CNF公式的“签名”双宽度的概念,并确定当由认证的签名的$ f $ plus $ k $参数化时,BWMC是固定参数可进行的。我们表明,这个结果很紧:如果一个人希望保留固定参数的障碍性,即使出于更轻松的问题,也不可以丢弃绑定的$ k $,也不可以使用香草双宽度。我们的理论结果通过经验评估和对各种CNF公式的双宽度的比较进行了补充。

Bonnet et al. (FOCS 2020) introduced the graph invariant twin-width and showed that many NP-hard problems are tractable for graphs of bounded twin-width, generalizing similar results for other width measures, including treewidth and clique-width. In this paper, we investigate the use of twin-width for solving the propositional satisfiability problem (SAT) and propositional model counting. We particularly focus on Bounded-ones Weighted Model Counting (BWMC), which takes as input a CNF formula $F$ along with a bound $k$ and asks for the weighted sum of all models with at most $k$ positive literals. BWMC generalizes not only SAT but also (weighted) model counting. We develop the notion of "signed" twin-width of CNF formulas and establish that BWMC is fixed-parameter tractable when parameterized by the certified signed twin-width of $F$ plus $k$. We show that this result is tight: it is neither possible to drop the bound $k$ nor use the vanilla twin-width instead if one wishes to retain fixed-parameter tractability, even for the easier problem SAT. Our theoretical results are complemented with an empirical evaluation and comparison of signed twin-width on various classes of CNF formulas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源