论文标题

quijote-png:非线性暗物质密度字段中原始非高斯性的准最大可能性估计

Quijote-PNG: Quasi-maximum likelihood estimation of Primordial Non-Gaussianity in the non-linear dark matter density field

论文作者

Jung, Gabriel, Karagiannis, Dionysios, Liguori, Michele, Baldi, Marco, Coulton, William R, Jamieson, Drew, Verde, Licia, Villaescusa-Navarro, Francisco, Wandelt, Benjamin D.

论文摘要

预计未来的大规模结构调查将改善原始非高斯(PNG)的当前界限,并对我们对早期宇宙物理学的理解产生重大影响。但是,此类改进的水平将在很大程度上取决于晚期非线性在多大程度上删除PNG信号的程度。在这项工作中,我们通过实施一种基于模拟的基于模拟的方法,用于PNG振幅的联合估算($ f _ {\ rm nl} $)和标准$λ$ CDM参数,来显示非线性暗物质密度字段的双原始信息的数量。估计器基于最佳压缩统计数据,该统计量对于给定的输入密度场,将功率谱和模态双光谱测量结合在一起,并数值评估其协方差及其对宇宙学参数变化的响应。我们使用大量的N体模拟(Quijote-PNG)训练和验证估计器,包括不同类型的PNG(局部,等边,正交)。对于输入实现总数的变化,我们明确测试了估计器的无偏,最佳性和稳定性。尽管暗物质功率谱本身包含可忽略不计的PNG信息,但如预期的那样,包括辅助统计信息,会增加从Bispectrum提取的PNG信息内容的订单$ 2 $。因此,我们证明了我们方法在非线性尺度上最佳提取PNG信息的能力,超出了扰动制度,高达$ k _ {\ rm max} = 0.5〜h \,{\ rm mpc}^{ - 1}^{ - 1} $,获得$ 1 $ - $ - $ $ coun $ bends $ bends $ bends nl}^{\ rm local} \ sim 16 $,$Δf_ {\ rm nl}^{\ rm equil} \ sim 77 $和$δf_ {\ rm nl}^{\ rm nl}^{\ rm ortho} $ z = 1 $。同时,我们讨论了有关这些量表上包含的宇宙学参数的重要信息。

Future Large Scale Structure surveys are expected to improve over current bounds on primordial non-Gaussianity (PNG), with a significant impact on our understanding of early Universe physics. The level of such improvements will however strongly depend on the extent to which late time non-linearities erase the PNG signal on small scales. In this work, we show how much primordial information remains in the bispectrum of the non-linear dark matter density field by implementing a new, simulation-based, methodology for joint estimation of PNG amplitudes ($f_{\rm NL}$) and standard $Λ$CDM parameters. The estimator is based on optimally compressed statistics, which, for a given input density field, combine power spectrum and modal bispectrum measurements, and numerically evaluate their covariance and their response to changes in cosmological parameters. We train and validate the estimator using a large suite of N-body simulations (QUIJOTE-PNG), including different types of PNG (local, equilateral, orthogonal). We explicitly test the estimator's unbiasedness, optimality and stability with respect to changes in the total number of input realizations. While the dark matter power spectrum itself contains negligible PNG information, as expected, including it as an ancillary statistic increases the PNG information content extracted from the bispectrum by a factor of order $2$. As a result, we prove the capability of our approach to optimally extract PNG information on non-linear scales beyond the perturbative regime, up to $k_{\rm max} = 0.5~h\,{\rm Mpc}^{-1}$, obtaining marginalized $1$-$σ$ bounds of $Δf_{\rm NL}^{\rm local} \sim 16$, $Δf_{\rm NL}^{\rm equil} \sim 77$ and $Δf_{\rm NL}^{\rm ortho} \sim 40$ on a cubic volume of $1~(\mathrm{Gpc}/h)^3$ at $z=1$. At the same time, we discuss the significant information on cosmological parameters contained on these scales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源