论文标题
仿射劳蒙的空间和迭代的W-Algebras
Affine Laumon spaces and iterated W-algebras
论文作者
论文摘要
发现了一个顶点代数的家族,其通用的Verma模块与仿期劳蒙空间的同时组合。该结果基于这些空间的繁殖性多项式生成功能的显式表达。有一种量子汉密尔顿还原的变体实现了我们称之为迭代的w- algebras的顶点代数,而我们的主要猜想是与仿射女laumon空间相关的顶点代数是迭代w- algebras的子代数。
A family of vertex algebras whose universal Verma modules coincide with the cohomology of affine Laumon spaces is found. This result is based on an explicit expression for the generating function of Poincare polynomials of these spaces. There is a variant of quantum Hamiltonian reduction that realizes vertex algebras which we call iterated W-algebras and our main conjecture is that the vertex algebras associated to the affine Laumon spaces are subalgebras of iterated W-algebras.