论文标题

部分可观测时空混沌系统的无模型预测

Finding Rule-Interpretable Non-Negative Data Representation

论文作者

Mihelčić, Matej, Miettinen, Pauli

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Non-negative Matrix Factorization (NMF) is an intensively used technique for obtaining parts-based, lower dimensional and non-negative representation. Researchers in biology, medicine, pharmacy and other fields often prefer NMF over other dimensionality reduction approaches (such as PCA) because the non-negativity of the approach naturally fits the characteristics of the domain problem and its results are easier to analyze and understand. Despite these advantages, obtaining exact characterization and interpretation of the NMF's latent factors can still be difficult due to their numerical nature. Rule-based approaches, such as rule mining, conceptual clustering, subgroup discovery and redescription mining, are often considered more interpretable but lack lower-dimensional representation of the data. We present a version of the NMF approach that merges rule-based descriptions with advantages of part-based representation offered by the NMF. Given the numerical input data with non-negative entries and a set of rules with high entity coverage, the approach creates the lower-dimensional non-negative representation of the input data in such a way that its factors are described by the appropriate subset of the input rules. In addition to revealing important attributes for latent factors, their interaction and value ranges, this approach allows performing focused embedding potentially using multiple overlapping target labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源