论文标题

图形和图自动形态的雅各布式

The Jacobian of a graph and graph automorphisms

论文作者

Estélyi, István, Karabáš, Ján, Mednykh, Alexander, Nedela, Roman

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the present paper we investigate the faithfulness of certain linear representations of groups of automorphisms of a graph $X$ in the group of symmetries of the Jacobian of $X$. As a consequence we show that if a $3$-edge-connected graph $X$ admits a nonabelian semiregular group of automorphims, then the Jacobian of $X$ cannot be cyclic. In particular, Cayley graphs of degree at least three arising from nonabelian groups have non-cyclic Jacobians. While the size of the Jacobian of $X$ is well-understood - it is equal to the number of spanning trees of $X$ - the combinatorial interpretation of the rank of Jacobian of a graph is unknown. Our paper presents a contribution in this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源