论文标题

迈向全$ W $ CDM地图的基于弱透镜调查的分析

Towards a full $w$CDM map-based analysis for weak lensing surveys

论文作者

Zürcher, Dominik, Fluri, Janis, Ajani, Virginia, Fischbacher, Silvan, Refregier, Alexandre, Kacprzak, Tomasz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The next generation of weak lensing surveys will measure the matter distribution of the local Universe with unprecedented precision, allowing the resolution of non-Gaussian features of the convergence field. This encourages the use of higher-order mass-map statistics for cosmological parameter inference. We extend the forward-modelling based methodology introduced in a previous forecast paper to match these new requirements. We provide multiple forecasts for the wCDM parameter constraints that can be expected from stage 3 and 4 weak lensing surveys. We consider different survey setups, summary statistics and mass map filters including wavelets. We take into account the shear bias, photometric redshift uncertainties and intrinsic alignment. The impact of baryons is investigated and the necessary scale cuts are applied. We compare the angular power spectrum analysis to peak and minima counts as well as Minkowski functionals of the mass maps. We find a preference for Starlet over Gaussian filters. Our results suggest that using a survey setup with 10 instead of 5 tomographic redshift bins is beneficial. Adding cross-tomographic information improves the constraints on cosmology and especially on galaxy intrinsic alignment for all statistics. In terms of constraining power, we find the angular power spectrum and the peak counts to be equally matched for stage 4 surveys, followed by minima counts and the Minkowski functionals. Combining different summary statistics significantly improves the constraints and compensates the stringent scale cuts. We identify the most `cost-effective' combination to be the angular power spectrum, peak counts and Minkowski functionals following Starlet filtering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源