论文标题

时间连续和时间连续的时空有限元素,用于降水问题

Time-Continuous and Time-Discontinuous Space-Time Finite Elements for Advection-Diffusion Problems

论文作者

von Danwitz, Max, Voulis, Igor, Hosters, Norbert, Behr, Marek

论文摘要

我们基于线性张量产品和单纯型有限元构建了四个时空有限元离散的变体。由此产生的离散是在空间中连续的,并且时间连续或不连续。在第一次测试中,所有四种方法都应用于线性标量对流扩散模型问题。然后,在数值实验中研究了时间连续的时空有限元离散化的收敛属性。对流速度和扩散系数各不相同,因此纯扩散(热方程)的抛物线病例以及纯对流方程(传输方程)的双曲线病例包括在研究中。对于每个模型参数集,计算最终时间的L2误差,用于在几个数量级上范围内的空间和时间元素长度,以允许对该方法的空间,时间和时空精度进行单独评估。在抛物线情况下,特别注意与时间有关的边界条件的影响。关键发现包括二阶的空间精度和第二阶和三阶之间的时间精度。时间准确性倾向于三阶,这取决于对流率主导的测试案例,根据选择特定的离散方法以及时间 - (in)的依赖性和边界条件的处理。此外,使用活塞环填充测试用例证明了时间连续的单纯形时空有限元对热通量计算的潜力。

We construct four variants of space-time finite element discretizations based on linear tensor-product and simplex-type finite elements. The resulting discretizations are continuous in space, and continuous or discontinuous in time. In a first test run, all four methods are applied to a linear scalar advection-diffusion model problem. Then, the convergence properties of the time-discontinuous space-time finite element discretizations are studied in numerical experiments. Advection velocity and diffusion coefficient are varied, such that the parabolic case of pure diffusion (heat equation), as well as, the hyperbolic case of pure advection (transport equation) are included in the study. For each model parameter set, the L2 error at the final time is computed for spatial and temporal element lengths ranging over several orders of magnitude to allow for an individual evaluation of the methods' spatial, temporal, and spacetime accuracy. In the parabolic case, particular attention is paid to the influence of time-dependent boundary conditions. Key findings include a spatial accuracy of second order and a temporal accuracy between second and third order. The temporal accuracy tends towards third order depending on how advection-dominated the test case is, on the choice of the specific discretization method, and on the time-(in)dependence and treatment of the boundary conditions. Additionally, the potential of time-continuous simplex space-time finite elements for heat flux computations is demonstrated with a piston ring pack test case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源