论文标题
C* - 代数的可计算介绍
Computable presentations of C*-algebras
论文作者
论文摘要
我们在有效度量结构理论计划下启动对真实和复杂c*代数的可计算介绍的研究。以小组状况为模型,我们为C* - 代数开发了相应的递归演示和单词问题的概念,并在这种情况下显示出一些类似的结果。著名的是,每个有限生成的具有可计算说明的群体都是可计算的,但是在C*-Algebras的情况下,我们提供了反例。另一方面,我们显示每个有限维c*代数都是分类的。
We initiate the study of computable presentations of real and complex C*-algebras under the program of effective metric structure theory. With the group situation as a model, we develop corresponding notions of recursive presentations and word problems for C*-algebras, and show some analogous results hold in this setting. Famously, every finitely generated group with a computable presentation is computably categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every finite-dimensional C*-algebra is computably categorical.