论文标题

资源分配的欺骗性计划

Deceptive Planning for Resource Allocation

论文作者

Chen, Shenghui, Savas, Yagiz, Karabag, Mustafa O., Sadler, Brian M., Topcu, Ufuk

论文摘要

我们考虑一个在对抗环境中导航的自主代理团队,并旨在通过在一组目标位置分配资源来实现任务。环境中的对手观察了自治团队的行为,以推断其目标并反对团队。在这种情况下,我们提出了控制自主团队密度的策略,以便他们可以在实现所需的最终资源分配的同时欺骗对手的目标。我们首先根据最大熵的原理来开发一种预测算法,以表达对手预期的团队行为。然后,通过通过kullback-leibler的差异来衡量欺骗性,我们设计了基于凸优化的计划算法,通过将行为夸大了诱饵分配策略或对最终分配策略产生歧义来欺骗对手。一项$ 320 $参与者的用户研究表明,所提出的算法对欺骗有效,并揭示了参与者朝着邻近目标的固有偏见。

We consider a team of autonomous agents that navigate in an adversarial environment and aim to achieve a task by allocating their resources over a set of target locations. An adversary in the environment observes the autonomous team's behavior to infer their objective and responds against the team. In this setting, we propose strategies for controlling the density of the autonomous team so that they can deceive the adversary regarding their objective while achieving the desired final resource allocation. We first develop a prediction algorithm based on the principle of maximum entropy to express the team's behavior expected by the adversary. Then, by measuring the deceptiveness via Kullback-Leibler divergence, we devise convex optimization-based planning algorithms that deceive the adversary by either exaggerating the behavior towards a decoy allocation strategy or creating ambiguity regarding the final allocation strategy. A user study with $320$ participants demonstrates that the proposed algorithms are effective for deception and reveal the inherent biases of participants towards proximate goals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源