论文标题
可熟悉的订单类型
Inscribable order types
论文作者
论文摘要
如果订单类型是通过一个点配置实现的,即极端点都在一个圆圈上。在本文中,我们调查了订单类型的划分性。我们首先表明,每个简单的订单类型最多都有2个内部点是可识别的,并且此类订单类型的数量为$θ(\ frac {4^n} {n^n^{3/2}}})$。我们进一步构建了一个微不足道的订单类型的无限家族。不可分割性的证据主要使用möbius变换。我们还建议围绕可划界性开放问题。
We call an order type inscribable if it is realized by a point configuration where the extreme points are all on a circle. In this paper, we investigate inscribability of order types. We first show that every simple order type with at most 2 interior points is inscribable, and that the number of such order types is $Θ(\frac{4^n}{n^{3/2}})$. We further construct an infinite family of minimally uninscribable order types. The proof of uninscribability mainly uses Möbius transformations. We also suggest open problems around inscribability.