论文标题
通过粒子 - 孔对称性破坏的定位:循环扩展
Localization by particle-hole symmetry breaking: a loop expansion
论文作者
论文摘要
在$ d $ - 尺寸晶格上研究了在非相互作用量子粒子的随机系统中通过破裂的粒子孔对称性进行定位。我们的方法基于手性对称性论点和相应的不变度度量,其中后者由Grassmann功能积分描述。在循环膨胀中,我们可以在粒子孔对称性的情况下发现小环的扩散。打破粒子孔对称性会导致随机二聚体的产生,从而抑制扩散并导致在比例$ \ sqrt {d/|μ|} $上定位,其中$ d $是粒子孔对称性的有效扩散系数,$ $ $ $是与粒子 - 孔 - 孔符号对称性有关的参数。
Localization by a broken particle-hole symmetry in a random system of non-interacting quantum particles is studied on a $d$--dimensional lattice. Our approach is based on a chiral symmetry argument and the corresponding invariant measure, where the latter is described by a Grassmann functional integral. Within a loop expansion we find for small loops diffusion in the case of particle-hole symmetry. Breaking the particle-hole symmetry results in the creation of random dimers, which suppress diffusion and lead to localization on the scale $\sqrt{D/|μ|}$, where $D$ is the effective diffusion coefficient at particle-hole symmetry and $μ$ is the parameter related to particle-hole symmetry breaking.