论文标题
弱监督的代表性学习稀疏的扰动
Weakly Supervised Representation Learning with Sparse Perturbations
论文作者
论文摘要
代表性学习理论旨在构建用最小的领域知识或任何监督来源颠倒数据生成过程的方法。大多数先前的方法都需要对潜在变量和弱监督(辅助信息(例如时间戳))进行强有力的分配假设,以提供可证明的识别保证。在这项工作中,我们表明,如果一个人对潜在变量稀疏扰动产生的观察结果的监督较弱,例如。在强化学习环境中,动作移动单个精灵的图像 - 在未知的连续分布中可以实现识别。我们表明,如果仅将扰动应用于互斥的潜在潜在块,我们将标识到这些块的潜在。我们还表明,如果这些扰动块重叠,我们将潜在的识别到跨扰动共享的最小块。因此,如果仅在一个潜在变量中相交的块相交,则该潜在的潜在被识别为排列和缩放。我们提出了基于该理论的自然估计程序,并在低维合成和基于图像的实验上进行了说明。
The theory of representation learning aims to build methods that provably invert the data generating process with minimal domain knowledge or any source of supervision. Most prior approaches require strong distributional assumptions on the latent variables and weak supervision (auxiliary information such as timestamps) to provide provable identification guarantees. In this work, we show that if one has weak supervision from observations generated by sparse perturbations of the latent variables--e.g. images in a reinforcement learning environment where actions move individual sprites--identification is achievable under unknown continuous latent distributions. We show that if the perturbations are applied only on mutually exclusive blocks of latents, we identify the latents up to those blocks. We also show that if these perturbation blocks overlap, we identify latents up to the smallest blocks shared across perturbations. Consequently, if there are blocks that intersect in one latent variable only, then such latents are identified up to permutation and scaling. We propose a natural estimation procedure based on this theory and illustrate it on low-dimensional synthetic and image-based experiments.