论文标题
微机械谐振器中的持续非线性相锁和非单调能量耗散
Persistent nonlinear phase-locking and non-monotonic energy dissipation in micromechanical resonators
论文作者
论文摘要
许多非线性系统由具有振幅依赖性频率的本征码描述,每当频率在内部共振下变得相应时,就会强烈相互作用。通过共振的快速能量交换是丰富的动力学行为的关键,例如在热平衡中的时间变化的松弛率和非效应性的特征,在最近的微型和纳米力学共振器的实验和理论研究中揭示了。但是,对于这些多样化的,有时甚至是矛盾的实验观察,一种普遍但直观的物理描述仍然难以捉摸。在这里,我们通过实验揭示出在内部共振处出现的持续非线性非线性相锁状态,并证明它们对于理解具有耦合本征二元的非线性系统的瞬时动力学至关重要。较低的频率模式进入,维持和退出由较高频率模式施加的非线性驱动力产生的持续性相锁的周期状态,通过较低的频率模式进入,维护和退出较低的持续相锁定的周期状态来定量地描述了完全可观察到的微机械谐振系统的测量动力学。该模型描述了观察到的相锁相干时间,能量交换的方向和幅度以及所得的非单调模式能量演化。根据初始相对阶段的不同,系统会选择不同的放松途径,无论输入或绕过锁定状态。所述的持续相锁定不限于特定的频率分数或非线性类型,并且可能会跨物理领域(包括光子学和纳米力学)推进非线性谐振系统工程。
Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower frequency mode entering, maintaining, and exiting a persistent phase-locked period tripling state generated by the nonlinear driving force exerted by the higher frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting non-monotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase-locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.