论文标题

从产品文本描述中丰富时尚知识图

Enriching a Fashion Knowledge Graph from Product Textual Descriptions

论文作者

Barroca, João, Shivkumar, Abhishek, Ferreira, Beatriz Quintino, Sherkhonov, Evgeny, Faria, João

论文摘要

知识图为表示信息提供了非常有用和有力的结构,因此,它们已被用作电子商务场景中许多应用程序的骨干。在本文中,我们描述了现有技术在富含Farfetch构建的thelarge规模时尚知识图(FKG)中的应用。特别是,我们将命名实体识别(NER)和实体链接(EL)的技术应用技术,以提取和将丰富的元数据从产品文本描述中提取和链接到FKG中的实体。拥有一个完整而丰富的FKG作为电子商务骨干,可能会对诸如搜索和建议等下游应用程序产生高度价值的影响。但是,在时尚域中丰富知识图有其自身的挑战。数据表示与更通用的kg不同,例如Wikidata和Yago,因为实体(例如产品属性)对域太具体了,并且不容易获得长期的文本描述。数据本身也很稀缺,因为对训练监督模型的数据集进行标记是一项非常费力的任务。更重要的是,时尚产品表现出很高的可变性,需要一个复杂的属性本体。我们使用基于转移学习的方法对少量手动标记数据进行训练NER模块,然后是将先前识别的命名实体与FKG内的适当实体联系起来的EL模块。使用预训练模型的实验表明,即使使用一个小的手动标记数据集,也可以在NER中获得89.75%的精度。此外,尽管依靠简单的基于规则或ML模型(由于缺乏培训数据),但EL模块还是能够将相关属性链接到产品,从而自动富含FKG。

Knowledge Graphs offer a very useful and powerful structure for representing information, consequently, they have been adopted as the backbone for many applications in e-commerce scenarios. In this paper, we describe an application of existing techniques for enriching thelarge-scale Fashion Knowledge Graph (FKG) that we build at Farfetch. In particular, we apply techniques for named entity recognition (NER) and entity linking (EL) in order to extract and link rich metadata from product textual descriptions to entities in the FKG. Having a complete and enriched FKG as an e-commerce backbone can have a highly valuable impact on downstream applications such as search and recommendations. However, enriching a Knowledge Graph in the fashion domain has its own challenges. Data representation is different from a more generic KG, like Wikidata and Yago, as entities (e.g. product attributes) are too specific to the domain, and long textual descriptions are not readily available. Data itself is also scarce, as labelling datasets to train supervised models is a very laborious task. Even more, fashion products display a high variability and require an intricate ontology of attributes to link to. We use a transfer learning based approach to train an NER module on a small amount of manually labeled data, followed by an EL module that links the previously identified named entities to the appropriate entities within the FKG. Experiments using a pre-trained model show that it is possible to achieve 89.75% accuracy in NER even with a small manually labeled dataset. Moreover, the EL module, despite relying on simple rule-based or ML models (due to lack of training data), is able to link relevant attributes to products, thus automatically enriching the FKG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源